
LensLingo - AI Caption Generation

Intro/Motivation:

Have you ever been searching for an image online,

perhaps a specific photo you saw months ago, a particular

image you desperately need for a project, or even just for

fun? We (Nate, Robert, and Michael) have teamed up to

implement an exciting idea that could greatly help with this

desire: automatic captioning of images. When brainstorming

for this project, we wanted to design a model that could tell

you what brand of car you’re looking at, but we thought, why

stop there? We decided to design a model that could generate captions for any type of image,

making tasks like searching online easier. Additionally, this model could be used for accessibility

means, such as a “read aloud” function, which helps listen to a text message with images or for

those with vision impairments. We also thought it would be pretty cool to give a computer an

image and have it describe what’s going on - something that, if you told us at the beginning of

our computer science journey was possible, would set us into disbelief.

Data

We got the data for our project from the Flickr 8k dataset on Kaggle. This dataset

contains 8,092 images, each paired with five different captions, each with varying details about

the photo, describing what is happening in the image.

https://www.kaggle.com/datasets/adityajn105/flickr8k/data


A little girl covered in paint sits before a painted rainbow with her hands in

a bowl .

A little girl is sitting in front of a large painted rainbow .

A small girl in the grass plays with fingerpaints in front of a white canvas

with a rainbow on it .

There is a girl with pigtails sitting in front of a rainbow painting .

Young girl with pigtails painting outside in the grass .

The images were chosen from six different groups on Flickr and don’t contain

well-known people or locations. They encompass a wide range of arbitrary scenarios. We will

use this dataset to train our model to predict captions for future inputted images, training each

combination of photo and caption to yield the most accurate results. We chose this dataset

because it had multiple different captions for each photo, was not as massive as something like

ImageNet (our laptops don’t have the processing power for that, unfortunately), and was rated

highly by the community.

Preprocessing



Before we can use our data to train our model, we have to process it. To extract the

necessary features from our images, we used the VGG16 model. We load our pictures, convert

them to numpy arrays, reshape them for the VGG16 model, pass them into the model, extract the

features, and finally store the image in a dictionary, with the key being the image name.

We stored our features in a pickle file for easier access later on.

Next, we need to map our images to the five captions for each image. To do this, we

create a dictionary and iterate through the list of captions, each containing the name of the

associated image. For each image, we store the list of related captions in the dictionary using the

image name as the key. But we’re not done there - we need to “clean” our captions so they are

standardized, all lowercase, and don't contain extra spaces, punctuation, or digits. We also add a

“startseq” and “endseq” tag to the start and end of each of our captions to allow the model to

know precisely where each sequence starts and begins.

Next, we use a tokenizer to get every unique word by creating a list of all the captions

and fitting the tokenizer to the list. From this, we get our vocabulary size, which is the length of

the list of unique words plus one (an index for words not in the vocabulary). This allows us to

map each word to a unique index in the vocabulary to give the model the required numerical

input.

We need to split the data into train and test data. We use a 90% split, 90% of the data for

training and 10% for testing. Since our dataset is highly variable with many different types of

images, we need to use as much data as possible to ensure model accuracy. Our dataset is

relatively large, so 10% of the data will be sufficient for testing. Additionally, we can manually

verify our model by generating images and seeing if they are correct.



A data generator is a tool that efficiently handles data loading and preprocessing,

ensuring that only small batches of data are loaded into memory at any time. It is beneficial for

our image captioning since each training instance involves both image and sequential caption

data, resulting in a significant amount of data to generate. Let us explain what the above code is

doing.

Processing and Encoding: The generator reads all associated captions for each image (denoted by

key). The generator encodes the captions into sequences of integers with a tokenizer, padding

them to a fixed length and converting the output words into one-hot encoded formats.

Creating training pairs: For each caption, the

generator iterates through each word to generate

training pairs of input sequences (X2) and the

following word (y), where X2 is the sequence



leading up to the current word, and y is the one-hot encoded next word.

Feature Preparation: The image features (X1) corresponding to each input sequence are also

prepared. These features are retrieved from our dictionary (features).

Batch Yielding: Once enough data pairs (determined by batch_size) are prepared, the

generator puts them into arrays and yields these arrays for training. After yielding, it resets the

lists and counter, ready to prepare the next batch.

Now that our data is processed and split into training and test data, we can train our

model!

Method
# Image feature extractor

inputs1 = Input(shape=(4096,))

fe1 = Dropout(0.4)(inputs1)

fe2 = Dense(256, activation='relu')(fe1)

fe2_repeated = RepeatVector(max_length)(fe2)

# Sequence processor

inputs2 = Input(shape=(max_length,))

se1 = Embedding(vocab_size, 256, mask_zero=True)(inputs2)

se2 = Dropout(0.4)(se1)

combined_input = Concatenate()([fe2_repeated, se2])

se3 = Bidirectional(LSTM(256, return_sequences=False))(combined_input)

# Output layer for predicting the next word directly

outputs = Dense(vocab_size, activation='softmax')(se3)

model = Model(inputs=[inputs1, inputs2], outputs=outputs)

We gained inspiration for our model from a code example on the Kaggle page for the

Flickr 8k dataset. While the Kaggle architecture performed well, we wanted to make it better. We

knew immediately that we wanted to do an encoder-decoder model, as we found they were the

best architecture for NLP tasks through our research. We experimented with different types of

layers, trying LSTMs, bidirectional LSTMs, and various combinations of dropout, dense, add,



etc. After our experimentation, the architecture above had the highest performance out of all our

models, we used Weights and Biases to fine-tune the hyperparameters. By running “sweeps,”

where different combinations of parameters are tested, we optimized our model for the best

results. We tested changing dropout, learning rate, epochs, batch size, and the optimizer (Adam

vs SGD). Our final parameters were as follows:

Image Feature Extractor Layers

Input layer: We start with the image input layer containing the preprocessed image features. We

take in our pre-processed images, represented as a flat array of 4096 elements - the output of the

VGG16 model we used to extract features from the images.

Dropout Layer: We set the dropout rate to 40% of the data points. This is used to prevent

overfitting during training by randomly removing subsets of features during different iterations.

By experimenting with the hyperparameters, 40% was chosen as a reasonable dropout rate. In

our model, 40% yielded the best results.

Dense Layer: After the dropout, we use a dense layer with 256 units and a ReLU activation

function. This layer transforms the linearized images into a non-linear higher-dimensional

representation so patterns and relationships can be better captured.

RepeatVector Layer: We use the repeat vector to match the output of the dense layer max_length

times. This is done to match the sequence length of the inputted captions.

Sequence Processor Layers

Input Layer: This layer accepts a sequence of integers, where each integer represents a word in

our vocabulary. The vector length is capped to the max length of the captions.

Embedded Layer: The integers are then mapped to a dense vector of size 256 using an

embedding layer. This layer learns a dense representation for each word in the vocabulary. This



layer is like a lookup table that transforms word indices into continuous vectors. The embedding

ignores zeros, which are used for padding the sequences.

Dropout Layer: Similar to the image features, the dropout layer is used here to help mitigate

overfitting by randomly setting inputs to zero during training (again using 40%).

Concatenate Layer: This layer concatenates the RepeatVector layer's output with the dropout

layer's output. It combines the image features with the textual features before further processing.

Bidirectional LSTM Layer: This layer has a Bidirectional Long Short-Term Memory unit with

256 units. This is used to process the combined input sequence and output a representation of its

understanding of the sequence. The

bidirectional aspect allows the model to look at

the context from both directions of the input

sequence. When researching our model, we

found that Bidirectional LSTMs are used

extensively in NLP projects. This makes a lot of

sense, as they can learn and remember over

long sequences, making them highly suitable

for the sequential data that NLP problems

contain.

Output Layer: Finally, our output layer consists of a dense layer with a softmax activation

function. This predicts the probability distribution over the vocabulary for the next word in the

sequence.



Results

Model Arch Corpus Scores Photo

Kaggle Inspiration BLEU-1: 0.5497
BLEU-2: 0.3210

Concat BLEU-1: 0.5290
BLEU-2: 0.3010



Bidirectional BLEU-1: 0.5483
BLEU-2: 0.3265

Bidirectional V2 BLEU-1: 0.5221
BLEU-2: 0.2934

Bidirectional V3 (final
model)

BLEU-1: 0.5687
BLEU-2: 0.3447



Pictured above are some of the models we tested. While we did test other architectures,

mostly just tweaking some of the layers, we only included the successful models. After

experimentation, we settled on the Bidirectional V3 model, as it rendered the best results.

From our step vs loss graph, we see that our loss drops dramatically between 0 and 10

steps and then slowly decreases. Although most of our sweeps were capped at 30 epochs, we ran

a few sweeps for many more steps (60, 70), which resulted in a marginal decrease in loss.



We use the BLEU score, 0 to 1, for our accuracy metric to measure how similar a given

set of text is to reference text. BLEU-1 is a unigram precision score, which will compare each

word token with a respective reference word token. BLEU-2 is a bigram precision score

comparing sets of two-word tokens with respective sets of two reference word tokens. After

researching the BLEU score, a score between 0.6 and 0.7 is the best BLEU-1 score that can

reasonably be achieved. When looking at our BLEU-1 bar charts, the Adam optimizer drastically

outperforms the sgd optimizer. We suspect this is because Adam has an adaptive learning rate,

whereas sgd has a fixed one. This means our learning rate choices may not have been ideal for

sgd to perform well. The sweeps with batch sizes of 32 and 16 outperformed the sweeps with a

batch size of 48. This can likely be explained by the fact that larger batch sizes will lead to lower

variance and speed up training; however, they may lead to lower accuracy. From our BLEU

score vs learning rate chart, we found that a learning rate of 0.001 performed the best.

Examples





Conclusion

We had a great time building, testing, and improving this model. Using Weights and

Biases to optimize our model was a game changer, as it let us set the computer up overnight and

test many different combinations of hyperparameters. It also allowed us to visualize our data and

see the best hyperparameters easily. Using an encoder-decoder model was a great choice, as they

work very well for NLP problems, and our model rendered results that we were satisfied with. If

we had more computational power, we would have used a larger dataset, like ImageNet, to

recognize a broader range of images more accurately. Flickr8k, as the name suggests, only

contains 8,000 photos, which is nothing compared to the fourteen million something in

ImageNet. Another issue was needing more time and processing power to run the model with all

hyperparameters using random and grid search on Weights and Biases. Our solution was to

explore hyperparameter values using the Bayes optimization algorithm and to implement early

stopping to terminate the sweep without exploring all hyperparameter combinations. Another

issue was that saving models becomes challenging when using Weights and Biases because the

models are only scoped to the Weights and Biases function. Our solution was to save the models

for each Weights and Biases iteration. The project taught us a lot about optimizing our model and

designing an architecture to solve the task, and we are happy with the results. Perhaps with more

computational power and a larger dataset, we could create a far more accurate image captioning

AI.


